Los seguidores de Manolo

Cómo sacarle la torsión a SL(d,Z)

In Grupos y geometría, Teoría de números on Miércoles 27, agosto, 2014 at 12:18 pm

por Andrés Sambarino

La idea de este texto es explicar cómo hacer para encontrar un subgrupo de indice finito de

\textrm{SL}(d,\mathbb{Z})=\{\textrm{matrices }d\times d\textrm{ con entradas en }\mathbb{Z}\textrm{ y }\det=1\},

que no tenga torsión.

Sea \lambda un entero algebraico, es decir, \lambda es raíz de un polinomio p\in\mathbb{Z}[x]. El conjunto \{p\in\mathbb{Q}[x]: p(\lambda)=0\} es un ideal de \mathbb{Q}[x] y, dado que \mathbb{Q}[x] es un DIP (i.e. todo ideal es generado por un elemento) existe un polinomio p_\lambda\in\mathbb{Z}[x] tal que si p(\lambda)=0 entonces p= p_\lambda\cdot q para algún q\in\mathbb{Z}[x]. El polinomio p_\lambda es único si exigimos que los coeficientes no tengan un divisor común. El grado de \lambda es el grado de p_\lambda.

El primer paso clave es el siguiente:

Lema. Sea g\in\textrm{SL}(d,\mathbb{Z}) un elemento de torsión, entonces sus valores propios son raíces de la unidad, de grado a lo sumo d.

Prueba. Es obvio que los valores propios de g son raíces de la unidad, ya que g^n=\textrm{Id}. Sea \lambda un valor propio de g, y p_\lambda\in\mathbb{Z}[x] el polinomio irreducible sobre \mathbb{Z} asociado a \lambda. El polinomio característico de g tiene a \lambda por raíz y por tanto a p_\lambda por factor, así d\geq k.

\square

Jorge Lewowicz

In Uncategorized on Sábado 28, junio, 2014 at 6:46 am

El 21 de junio de 2014 fallece en Montevideo Jorge Lewowicz, Matemático uruguayo y Dr. Honoris Causa de la Universidad de la República. Aquí, en el coloquio oleis, hacemos un pequeño y simple homenaje a un gran maestro y amigo. Mejores referencias para su trabajo, tanto humano como matemático, pueden encontrarse en este link. A continuación Rafael Potrie escribe unas breves palabras sobre su obra.

Jorge trabajó en sistemas dinámicos desde un punto de vista topológico. Una de sus obsesiones matemáticas fue la de entender los homeomorfismos expansivos, que en sus palabras “son aquellos donde cada punto tiene un comportamiento dinámico distintivo”.

Definición. Sea X un espacio métrico compacto. Decimos que un homemorfismo f:X\to X es expansivo, si existe \alpha>0 tal que para todos x\neq y\in X, existe n\in\mathbb Z tal que d(f^n(x),f^n(y))>\alpha.

Topologias en conjuntos finitos

In Topología on Lunes 28, abril, 2014 at 3:24 pm

por Andrés Sambarino

Voy a parafrasear este artículo de wikipedia que me dejó como loco.

El asunto es poner una topología en un conjunto de 4 elementos, y ver que el grupo fundamental es \mathbb{Z}. La cosa es así: Considerás X=\{a,b,c,d\}, con la topología \tau=\{\emptyset, X, \{a,b,c\},\{a,b,d\}, \{a,b\},\{a\},\{b\}\}.

cuatroSe puede construir fácil una función contínua sobreyectiva del círculo en (X,\tau) como en el dibujo: Consideramos el círculo como vectores de norma 1 en \mathbb{R}^2, y definimos

f(x,y)=\left\{\begin{array}{cccc}a\textrm{ si }x<0,\\ b\textrm{ si }x>0\end{array}\right.,

f(1,0)=c y f(-1,0)=d.

Para calcular el grupo fundamental, la idea es ver que el espacio X es union de dos abiertos contractibles, \{a,b,c\} y \{a,b,d\} cuya intersección son dos conjuntos contractibles. Para ver que \{a,b,c\} es contractible basta observar que \{a,b\} es abierto y \{c\} es cerrado y considerar el mapa H:\{a,b,c\}\times[0,1]\to\{a,b,c\} dado por

H(x,t)=x para t<1/2 y H(x,t)=c para t\geq1/2.

En esta situación no se puede usar el teorema de van Kampen, porque la intersección de \{a,b,c\} con \{a,b,d\} no es conexa, pero parece que hay una generalizacion que permite usar van Kampen con varios puntos base.

Resulta ademas, que en este artículo, McCord prueba que cualquier CW complejo finito (finitas celulas) es debilmente homotopicamente equivalente (i.e. hay una función que es un isomorfismo en todos los gruos de homotopia) a una topología en un conjunto finito…

 

 

 

 

 

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

Únete a otros 46 seguidores