Los seguidores de Manolo

Archive for 17 febrero 2014|Monthly archive page

Conjuntos ambiente homogeneos

In Grupos y geometría, Topología on Lunes 17, febrero, 2014 at 8:54 pm

por Rafael Potrie

El objetivo de este post es presentar un resultado que por mucho tiempo me resultó bastante misterioso pero que es sencillo y bastante lindo. Es una caracterización de las subvariedades encajadas a través de propiedades locales de sus encajes.

Para mantener la discusión simple (sin perder generalidad) trabajaremos en \mathbb{R}^d. Es fácil ver, dado que todos los argumentos y definiciones son locales, que esto se extiende de forma directa a variedades diferenciables en general.

Sea \Lambda \subset \mathbb{R}^d un conjunto localmente compacto. Decimos que \Lambda es C^1ambiente homogeneo si se cumple que para todo par de puntos x, y \in \Lambda existen entornos U_x y U_y en \mathbb{R}^d de ellos y un difeomorfismo \varphi: U_x \to U_y de clase C^1  que manda x en y y cumple que \varphi(U_x \cap \Lambda)= U_y \cap \Lambda.

Probaremos un resultado debido a Repovs. Skopenkov y Scepin que afirma que un conjunto C^1-ambiente homogeneo es una subvariedad C^1 encajada en \mathbb{R}^d. Notar que es un ejercicio sencillo mostrar que las sub-variedades encajadas de clase C^1 son efectivamente C^1-ambiente homogeneas. No veremos muchas aplicaciones, referimos al  lector por ejemplo a este paper de Amie Wilkinson que utiliza este resultado y da una prueba del caso C^r. Si mencionamos que este resultado tiene como consecuencia directa que los subgrupos cerrados de un grupo de Lie son grupos de Lie.

Es un ejercicio interesante mostrar que el conjunto de Cantor puede ser encajado en \mathbb{R}^2 de forma tal de ser Lipschitz ambiente homogéneo. Otro interesante ejercicio es mostrar el resultado para el caso de subconjuntos C^0-ambiente homogeneos de \mathbb{R}.

Lee el resto de esta entrada »