Los seguidores de Manolo

Archive for 5 agosto 2015|Monthly archive page

Construcciones aritméticas parte 2

In Álgebra, Grupos y geometría, Teoría de números on Miércoles 5, agosto, 2015 at 1:15 pm

por Andrés Sambarino

El plan ahora es contar otro tipo de construcción aritmética que da lugar a subgrupos \Gamma de co-volumen finito de \textrm{PSL}(2,\mathbb{R})^\alpha\times\textrm{PSL}(2,\mathbb{C})^\beta, para \alpha,\beta\geq0 (es decir, modulo torsion, variedades de volumen finito modeladas en (\mathbb{H}^2)^\alpha\times(\mathbb{H}^3)^\beta) y sobre el final vamos a enunciar la formula para calcular el co-volumen de \Gamma en términos de las cuestiones aritméticas que aparecen en su construcción.

La construcción empieza por elegir un cuerpo k que sea una extension finita de \mathbb{Q}. Si el numero de morfismos de k en \mathbb{C} se escribe como r+2\beta, donde r son aquellos que caen \mathbb{R} (y el 2 es para no contar uno y su conjugado), entonces vamos a explicar la idea de como construir un subgrupo de co-volumen finito de \textrm{PSL}(2,\mathbb{R})^\alpha\times\textrm{PSL}(2,\mathbb{C})^\beta para 0\leq \alpha\leq r. Así, el cuerpo \mathbb{Q}(\sqrt{-1}) da lugar a 3-variedades hiperbólicas de volumen finito, el cuerpo \mathbb{Q}(\sqrt2) da lugar a superficies hiperbólicas de area finita y el cuerpo \mathbb{Q}(\sqrt[3]2) da lugar a variedades de volumen finito modeladas en \mathbb{H}^2\times\mathbb{H}^3 que no son un producto.

Esta historia nace en el paper de Borel, lo que vamos a contar acá se encuentra en el libro de Maclachlan-Ried.

El asunto viene con las álgebras de cuaterniones: si k es un cuerpo y a,b\in k^*=k-\{0\} definimos el álgebra de cuaterniones H=H/k=H_{(a,b)/k} sobre k, como el espacio vectorial sobre k generado por \{1,i,j,ij\} con las relaciones de producto

i^2=a\cdot 1=a,\ j^2=b\textrm{ y } ij=-ji. Leer el resto de esta entrada »