Los seguidores de Manolo

Archive for the ‘Grupos y geometría’ Category

Construcciones aritméticas parte 2

In Álgebra, Grupos y geometría, Teoría de números on Miércoles 5, agosto, 2015 at 1:15 pm

por Andrés Sambarino

El plan ahora es contar otro tipo de construcción aritmética que da lugar a subgrupos \Gamma de co-volumen finito de \textrm{PSL}(2,\mathbb{R})^\alpha\times\textrm{PSL}(2,\mathbb{C})^\beta, para \alpha,\beta\geq0 (es decir, modulo torsion, variedades de volumen finito modeladas en (\mathbb{H}^2)^\alpha\times(\mathbb{H}^3)^\beta) y sobre el final vamos a enunciar la formula para calcular el co-volumen de \Gamma en términos de las cuestiones aritméticas que aparecen en su construcción.

La construcción empieza por elegir un cuerpo k que sea una extension finita de \mathbb{Q}. Si el numero de morfismos de k en \mathbb{C} se escribe como r+2\beta, donde r son aquellos que caen \mathbb{R} (y el 2 es para no contar uno y su conjugado), entonces vamos a explicar la idea de como construir un subgrupo de co-volumen finito de \textrm{PSL}(2,\mathbb{R})^\alpha\times\textrm{PSL}(2,\mathbb{C})^\beta para 0\leq \alpha\leq r. Así, el cuerpo \mathbb{Q}(\sqrt{-1}) da lugar a 3-variedades hiperbólicas de volumen finito, el cuerpo \mathbb{Q}(\sqrt2) da lugar a superficies hiperbólicas de area finita y el cuerpo \mathbb{Q}(\sqrt[3]2) da lugar a variedades de volumen finito modeladas en \mathbb{H}^2\times\mathbb{H}^3 que no son un producto.

Esta historia nace en el paper de Borel, lo que vamos a contar acá se encuentra en el libro de Maclachlan-Ried.

El asunto viene con las álgebras de cuaterniones: si k es un cuerpo y a,b\in k^*=k-\{0\} definimos el álgebra de cuaterniones H=H/k=H_{(a,b)/k} sobre k, como el espacio vectorial sobre k generado por \{1,i,j,ij\} con las relaciones de producto

i^2=a\cdot 1=a,\ j^2=b\textrm{ y } ij=-ji. Lee el resto de esta entrada »

Anuncios

Clasificación de superficies simplécticas racionales y regladas parte 1

In Análisis Real y Complejo, Grupos y geometría on Viernes 3, julio, 2015 at 2:59 pm

por Agustín Moreno

En pos de contextualización, este post surgió de una discusión sobre matemática y afines con el sambita, mientras nos partiamos la boca con tremendos churrascos y un vinito en algún bar perdido de Paris. El tipo queria saber para que quiere uno las curvas holomorfas esas de las que tanto se ha oido hablar, definidas nada más y nada menos que por el mismísimo Gromov allá por el ’85 con su tremendo paper. Y ahi me acordé de un teoremaso de McDuff, sobre el cual este divague va a tratar. Todo lo que voy a decir sale de estas notas de mi supervisor, Chris Wendl.

Ya me disculpo por (y de aquí en más dimito responsabilidad por sobre) el coloquialismo, y la falta de formalidad y rigor y que el estimado lector puede encontrar. Proceda bajo su propio riesgo.

Primero, acordate de qué es una variedad simpléctica. Cortito y al pie, es una variedad (de dimensión par) con una 2-forma cerrada y no degenerada. En particular, son todas orientables, y en dimensión dos una forma simpléctica es simplemente una forma de volumen. Una subvariedad es simpléctica si la restricción de la forma simpléctica a dicha subvariedad es también simpléctica, i.e no degenerada.

Si ahora S \subseteq M es una superficie en una 4-variedad orientable, tenemos el pairing de intersección

H_2(M) \times H_2(M) \rightarrow \mathbb{Z}

(A,B) \rightarrow A.B,

que viene dado por dualidad de Poincaré, y que básicamente consiste en contar (con signos que vienen de la orientación) los puntos de intersección de dos superficies transversales que representan cada clase de homología. Recordar que también vale tomar el número de autointersección de una superficie; simplemente perturbala para que quede transversal a si misma y contá las intersecciones. Lee el resto de esta entrada »

Construcciones aritméticas parte 1

In Álgebra, Grupos y geometría, Teoría de números on Sábado 14, febrero, 2015 at 1:15 pm

por Andrés Sambarino

Me gustaría contar algunas construcciones aritméticas que dan lugar a variedades compactas modeladas en ciertas geometrías (globalmente) simétricas. Toda la info de este post está incluida en estas notas de Yves Benoist.

La construcción que vamos a hacer es un caso particular de un Teorema de Borel y Harish-Chandra y tiene, por ejemplo, la siguiente consecuencia.

Proposición. Sea n un entero positivo, entonces existe una variedad hiperbólica compacta de dimension n.

La primer idea que a uno se le ocurriría para demostrar esto es copiar lo que se hace en dimension dos: considerar poliedros hiperbólicos y pegar adecuadamente las caras; los ángulos formados entre las caras de dimensión mas chica tienen que verificar ciertas condiciones; y si todo va bien se obtiene una variedad hiperbólica compacta.

Resulta que con este método solo se conocen ejemplos concretos hasta dimensión 5 y se sabe que no puede andar en dimensión mas grande que 29 (porqué sera esto…?).

Consideramos en \mathbb{R}^{p+q} la forma cuadrática de signatura (p,q) dada por

\overline\omega(v)=v_1^ 2+\cdots+v_p^2-\sqrt2(v_{p+1}^ 2+\cdots+v_{p+q}^2)

y sea

\textrm{SO}(\overline\omega,\mathbb{R})=\{g\in\textrm{SL}(p+q,\mathbb{R}):\overline\omega\circ g=\overline\omega\}

Lee el resto de esta entrada »

Cómo sacarle la torsión a SL(d,Z)

In Grupos y geometría, Teoría de números on Miércoles 27, agosto, 2014 at 12:18 pm

por Andrés Sambarino

La idea de este texto es explicar cómo hacer para encontrar un subgrupo de indice finito de

\textrm{SL}(d,\mathbb{Z})=\{\textrm{matrices }d\times d\textrm{ con entradas en }\mathbb{Z}\textrm{ y }\det=1\},

que no tenga torsión.

Sea \lambda un entero algebraico, es decir, \lambda es raíz de un polinomio mónico p\in\mathbb{Z}[x]. El conjunto \{p\in\mathbb{Q}[x]: p(\lambda)=0\} es un ideal de \mathbb{Q}[x] y, dado que \mathbb{Q}[x] es un DIP (i.e. todo ideal es generado por un elemento) existe un polinomio p_\lambda\in\mathbb{Z}[x] tal que si p(\lambda)=0 entonces p= p_\lambda\cdot q para algún q\in\mathbb{Z}[x]. El polinomio p_\lambda es único si exigimos que los coeficientes no tengan un divisor común. El grado de \lambda es el grado de p_\lambda.

El primer paso clave es el siguiente:

Lema. Sea g\in\textrm{SL}(d,\mathbb{Z}) un elemento de torsión, entonces sus valores propios son raíces de la unidad, de grado a lo sumo d.

Prueba. Es obvio que los valores propios de g son raíces de la unidad, ya que g^n=\textrm{Id}. Sea \lambda un valor propio de g, y p_\lambda\in\mathbb{Z}[x] el polinomio irreducible sobre \mathbb{Z} asociado a \lambda. El polinomio característico de g tiene a \lambda por raíz y por tanto a p_\lambda por factor, así d\geq k.

\square Lee el resto de esta entrada »

Conjuntos ambiente homogeneos

In Grupos y geometría, Topología on Lunes 17, febrero, 2014 at 8:54 pm

por Rafael Potrie

El objetivo de este post es presentar un resultado que por mucho tiempo me resultó bastante misterioso pero que es sencillo y bastante lindo. Es una caracterización de las subvariedades encajadas a través de propiedades locales de sus encajes.

Para mantener la discusión simple (sin perder generalidad) trabajaremos en \mathbb{R}^d. Es fácil ver, dado que todos los argumentos y definiciones son locales, que esto se extiende de forma directa a variedades diferenciables en general.

Sea \Lambda \subset \mathbb{R}^d un conjunto localmente compacto. Decimos que \Lambda es C^1ambiente homogeneo si se cumple que para todo par de puntos x, y \in \Lambda existen entornos U_x y U_y en \mathbb{R}^d de ellos y un difeomorfismo \varphi: U_x \to U_y de clase C^1  que manda x en y y cumple que \varphi(U_x \cap \Lambda)= U_y \cap \Lambda.

Probaremos un resultado debido a Repovs. Skopenkov y Scepin que afirma que un conjunto C^1-ambiente homogeneo es una subvariedad C^1 encajada en \mathbb{R}^d. Notar que es un ejercicio sencillo mostrar que las sub-variedades encajadas de clase C^1 son efectivamente C^1-ambiente homogeneas. No veremos muchas aplicaciones, referimos al  lector por ejemplo a este paper de Amie Wilkinson que utiliza este resultado y da una prueba del caso C^r. Si mencionamos que este resultado tiene como consecuencia directa que los subgrupos cerrados de un grupo de Lie son grupos de Lie.

Es un ejercicio interesante mostrar que el conjunto de Cantor puede ser encajado en \mathbb{R}^2 de forma tal de ser Lipschitz ambiente homogéneo. Otro interesante ejercicio es mostrar el resultado para el caso de subconjuntos C^0-ambiente homogeneos de \mathbb{R}.

Lee el resto de esta entrada »

La geometría de Hilbert de un conjunto estrictamente convexo

In Grupos y geometría on Viernes 21, junio, 2013 at 1:20 pm

por Andrés Sambarino

En este post vamos a hablar un poco de la geometría de Hilbert de un abierto convexo propio de el espacio proyectivo de \mathbb{R}^d,

\mathbb{P}(\mathbb{R}^d)=\{\textrm{rectas de }\mathbb{R}^d\textrm{ por }0\}.

Hay dos surveys que están buenos en este tema, uno es esta exposición de Quint en el seminario Bourbaki, el otro es los primeros capítulos de la tesis de Crampon, que la pueden encontrar acá.

Decimos que un abierto \Omega de \mathbb{P}(\mathbb{R}^d) es convexo si la intersección de \Omega con toda recta afin, es un conjunto conexo. Decimos además que \Omega es un propio, si existe un hiperplano V de \mathbb{P}(\mathbb{R}^d), que no intersecta la clausura de \Omega.

Si \Omega es un abierto convexo propio, podemos definir una distancia en \Omega usando la razón doble. Recordar que la razón doble  (ver este post) entre 4 puntos de la recta se define como

{\displaystyle [x,b,y,a]=\frac{x-b}{x-a}\frac{y-a}{y-b}.}

Así, si x,y son dos puntos de \Omega, consideramos la recta que los une y a,b\in\partial\Omega los puntos de intersección de esta recta con \partial\Omega. Definimos entonces la distancia entre x e y como Lee el resto de esta entrada »

Razon doble y geometría hiperbólica

In Grupos y geometría on Miércoles 22, febrero, 2012 at 11:12 am

por Andrés Sambarino

En este artículo me gustaría contar un poco de los cross ratio, o razon doble creo que se llama en español, a ver si le damos un poco de vida al coloquio Oleis que lo tenemos abandonado.

La razon doble entre cuatro puntos de \mathbb R\cup\{\infty\} se define como

{\displaystyle [x,y,z,t]=\frac{x-y}{x-t}\frac{z-t}{z-y}.}

Para acordarse de la formula lo mejor es pensar que el 1er numero ‘x‘ juega un rol similar al del tercero ‘z‘. Lo mismo pasa con el 2do y el 4to. Esto queda más claro con la relación siguiente

[x,y,z,t]=[z,t,x,y].                 (relación (1))

Lo primero que observamos es que el cross ratio de 4 puntos es invariante por transformaciones de Moebius (de coeficientes reales):

{\displaystyle x\mapsto \frac{ax+b}{cx+d}\ a,b,c,d\in\mathbb R.}

Lee el resto de esta entrada »

Clasificacion de las 1-variedades

In Grupos y geometría, Topología on Domingo 10, abril, 2011 at 2:33 am

por Pablo Lessa

En esta pequeña nota quiero dar una prueba de la clasificación de las variedades diferenciables de dimensión 1.

La otra demostración que conozco (e.g. en el libro de Milnor) utiliza que la variedad puede partirse en piezas que son segmentos parametrizados por longitud de arco, y luego analiza combinatoriamente como se pegan estas piezas llegando a los dos casos:  O se cierran y la variedad es un círculo, o no y la variedad es un intervalo.  Una demostración similar puede llevarse a cabo para variedades topológicas de dimensión 1 y además la demostración captura la escencia de porqué es verdad el resultado.  Cabe preguntarse entonces: ¿Porqué molestarse en dar otra demostración?

Creo que el mérito de la siguiente demostración es que, a pesar de no ser elemental, sólamente utiliza herramientas que son utiles para muchas otras cosas.  Sin más preambulos acá va la demostración.

Teorema: Toda variedad diferenciable conexa de dimensión 1 es difeomorfa a un intervalo o a \mathbb{R}/\mathbb{Z}.

Lee el resto de esta entrada »

Otro grupo de Lie que no es un grupo de matrices

In Grupos y geometría on Sábado 9, abril, 2011 at 1:08 pm

por Andrés Sambarino

Este post va en respuesta a la pregunta que hizo el lessa en este post. La idea es explicar, sin muchos detalles, porque el cubrimiento universal del grupo

\textrm{SL}(2,\mathbb R)=\{\textrm{matrices reales }2\times 2\textrm{ con }\det=1\}

no es un subgrupo del grupo matrices invertibles \textrm{GL}(n,\mathbb R).

El hecho fundamental es que todo morfismo \rho:\widetilde{\textrm{SL}(2,\mathbb R)}\to \textrm{GL}(n,\mathbb R) se factoriza a travez de \textrm{SL}(2,\mathbb R). Es decir:

Proposición. Sean \rho:\widetilde{\textrm{SL}(2,\mathbb R)}\to \textrm{GL}(n,\mathbb R) y \pi:\widetilde{\textrm{SL}(2,\mathbb R)}\to \textrm{SL}(2,\mathbb R) la proyección de cubrimiento, entonces existe un único \rho':\textrm{SL}(2,\mathbb R)\to\textrm{GL}(n,\mathbb R) tal que \rho=\rho'\circ \pi.

En particular el morfismo \rho no puede ser inyectivo.

El resto del artículo es para probar esta proposición. Hay dos ingredientes centrales: el primero dice que un morfismo entre álgebras de Lie se extiende a los respectivos grupos de Lie cuando el grupo de salida es simplemente conexo, y el segundo es que el grupo \textrm{SL}(2,\mathbb C) es simplemente conexo.

Lee el resto de esta entrada »

Un grupo de Lie que no es un grupo de matrices

In Grupos y geometría on Domingo 30, enero, 2011 at 4:44 pm

por Andrés Sambarino

Como dice el título, la idea del texto es mostrar un grupo de Lie que no se puede ver como un subgrupo de matrices, es decir, no admite un morfismo inyectivo en GL(n,\mathbb R)=\{\textrm{ matrices }n\times n\textrm{ de }\det\neq 0\}.

El ejemplo nace de la siguiente propiedad del grupo de Heisenberg de matrices triangulares superiores con unos en la diagonal:{\displaystyle \textrm{H}=\{\left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c\\ 0 & 0 & 1\end{array}\right):a,b,c\in\mathbb R\}}.

Consideramos la matriz

B=\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0\\ 0 & 0 & 0\end{array}\right),

un cálculo directo muestra que

{\displaystyle e^{tB}=\sum_{n=0}^\infty\frac{t^nB^n}{n!}=\textrm{id}+tB=\left(\begin{array}{ccc} 1 & 0 & t \\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right).}

Proposición. Sea \rho:	\textrm{H}\to GL(n,\mathbb R) un morfismo tal que \ker \rho contiene un elemento de la forma e^{t_0B} para algún t_0\in\mathbb R entonces todo el grupo \{e^{tB}:t\in\mathbb R\} está contenido en \ker\rho.

Lee el resto de esta entrada »