Los seguidores de Manolo

Archive for the ‘Dinámica genérica’ Category

Una dicotomía entre hiperbolicidad y dinámicas salvajes.

In Álgebra Lineal, Dinámica genérica on Viernes 18, junio, 2010 at 4:19 pm

por Rafael Potrie

En este post me gustaría contar un resultado debido a Mañe y dar indicaciones sobre su prueba que me resulta muy linda.

Antes, necesito introducir un par de conceptos, por simplicidad, voy a hacer todo en superficies. Sea {f\in Diff^1(M)} un difeomorfismo de una superficie {M}.

Decimos que un conjunto compacto invariante {\Lambda} es hiperbólico si para todo punto {x\in \Lambda}, tenemos una descomposición {T_xM = E^s_x \oplus E^u_x} de su espacio tangente y esta descomposición verifica las siguientes propiedades:

  • {Df_x(E^\sigma_x) = E^\sigma_{f(x)}} para todo {x\in \Lambda} y {\sigma= s,u}.
  • Existe un valor {N>0} tal que {\|Df^N_x|_{E^s(x)}\| < \frac 1 2} y {\|Df^{-N}_x|_{E^u_x}\|< \frac 1 2} para todo {x\in \Lambda}.

Un ejercicio interesante es mostrar que la definición implica que los fibrados {E^s_x} y {E^u_x} varían continuamente, en particular, la dimensión de dichos fibrados es localmente constante (y se puede extender a la clausura).

Lee el resto de esta entrada »

Anuncios